Global warming and human activities are accelerating the degradation of permafrost on the Qinghai-Tibet Plateau (QTP), leading to significant settlement and cracking issues in the local express highway infrastructures. In response, the Gonghe-Yushu Express Highway (GYE) on the east edge of the QTP incorporated extensive cooling measures during its construction to enhance embankment stability. Despite these efforts, field investigations have disclosed that embankment diseases persist across various sections, including those with implemented cooling measures. This study focuses on a specific test and demonstration section of the GYE, employing a suite of cooling measures to assess their engineering effectiveness. Utilizing a combination of multi-time ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) detection, alongside on-site disease investigations and temperature monitoring, this research comprehensively evaluates the efficacy of different cooling interventions. Findings indicate that although cooling measures generally curb permafrost degradation in areas with ice-rich and ice-saturated soils, they fall short in sections with massive ground ice. Of the six cooling measures examined in the demonstration section, ventilation duct embankments emerge as the most effective, whereas crushed-rock layer embankments rank as the least. The study further reveals that the combined use of XPS insulation boards and two-phase closed thermosyphons inadequately addresses the issue of central heat accumulation in broad-width express highways, reducing uneven settlement issues but aggravating longitudinal cracking. Comparative analysis of on-site surveys and monitoring data suggests that regular application of GPR and ERT techniques can proficiently assess the performance of cooling measures.
Read full abstract