An extended notion of a local empirical process indexed by functions is introduced, which includes kernel density and regression function estimators and the conditional empirical process as special cases. Under suitable regularity conditions a central limit theorem and a strong approximation by a sequence of Gaussian processes are established for such processes. A compact law of the iterated logarithm (LIL) is then inferred from the corresponding LIL for the approximating sequence of Gaussian processes. A number of statistical applications of our results are indicated.