An approximate approach is developed to estimate the residual carrying-capacities of fire and near-field blast-damaged reactive powder concrete-filled steel tube columns. The single-degree-of-freedom model is employed to calculate the initial deflections of fire-damaged reactive powder concrete-filled steel tube columns subjected to axial and blast-induced transverse loads, and then a modified formula including double coefficient is further proposed to predict the ultimate resistance. Then, a series of blast-resistance and load carrying-capacity tests on six large-scale reactive powder concrete-filled steel tube columns are conducted to validate the suitability of theoretical method presented in this article. Blast tests demonstrate that the blast-resistances of reactive powder concrete-filled steel tube columns are more sensitive to fire durations than to scale distances. In addition, it is indicated that ISO-834 standard fire exposures cause significant degradations of material properties and have remarkable effects on the residual carrying-capacities of reactive powder concrete-filled steel tube columns. No local bucking and burst could be observed in the residual carrying-capacity tests; also, there are no visible hinge-like deformations in the mid-span area, and the excellent fire-resistances and blast-resistances of reactive powder concrete-filled steel tube columns are experimentally verified. Analytical results show that the predicted axial load capacities of six reactive powder concrete-filled steel tube columns are in good agreement with experimental data. All damage indices of the test specimens are within 0.8, meaning only minor to severe damage is done to the reactive powder concrete-filled steel tube column during fire and blast attacks, which is consistent with the test results.
Read full abstract