PurposeThe fibers are loaded by the cosine component of the external load, when a fiber fails, and due to the local load-sharing nature, its force is shared by surviving neighboring fibers. The results show that the system presents a greater resistance and toughness toward the applied load compared to the classical one.Design/methodology/approachIn this paper, the authors adopt the dynamics of a local load-sharing fiber bundle model in two dimensions under an external load to study scaling law in failure process of composite materials with randomly oriented fibers. The model is based on the fiber bundle model where the fibers are randomly oriented. The system is different to the classical one where the fibers are arranged in parallel with the applied load direction.FindingsThe evolution time of the fraction of broken fiber is described by an exponential law with two characteristic times. The latter decrease linearly and exponentially respectively with both applied load and temperature.Originality/valueScaling behavior of the broken fiber numbers with the size system shows that the system exhibits a scaling law of Family–Vicsek model with universal exponents.