Among various approximation formulas for the gamma function, Smith showed that \t\t\tΓ(x+12)∼S(x)=2π(xe)x(2xtanh12x)x/2,x→∞,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\Gamma \\biggl( x+\\frac{1}{2} \\biggr) \\thicksim S ( x ) =\\sqrt{2 \\pi } \\biggl( \\frac{x}{e} \\biggr) ^{x} \\biggl( 2x\\tanh \\frac{1}{2x} \\biggr) ^{x/2}, \\quad x\\rightarrow \\infty , $$\\end{document} which is a little-known but accurate and simple one. In this note, we prove that the function xmapsto ln Gamma ( x+1/2 ) - ln S ( x ) is strictly increasing and concave on ( 0,infty ) , which shows that Smith’s approximation is just an upper one.