BackgroundTrace elements of copper (Cu) are one of the main forms of ecological noxious waste in freshwater systems that affect the survival and development of organisms. The objective of the current study was to investigate the effects of chronic exposure to Cu on the growth, oxidative stress, immune and biochemical response in the Nile tilapia, Oreochromis niloticus. MethodsThree groups of O. niloticus were tested as follows; the first group was used as the control (not treated with Cu in water), while the 2nd and 3rd groups were exposed to (low) 40 μg L−1 and (high) 400 μg L−1 concentrations of Cu added to water, respectively. The duration of the experiment, which was conducted in triplicate, was 60 d. End points were evaluated on days 30 and 60. Following 30 d and 60 d of exposure to Cu, the fish were removed from experimental tanks to determine growth. Consequently, blood samples were collected from caudal veins at the end of the trial period (30 d and 60 d) and serum was separated to evaluate different immunological parameters, such as lysozymes (LYZ), respiratory burst activity (RBA) and myeloperoxidase (MPO). Gill and liver tissues were collected for evaluation of Cu and certain biochemical parameters as follows: antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST); non-enzymatic antioxidants such as glutathione (GSH) and metallothionein (MT), and oxidative stress indicators such as malondialdehyde (MDA) and protein carbonyl (PCO). The results pertaining to treatments and the control were compared using two-way ANOVA and Tukey’s HSD test. The level of significance was set at P ≤ 0.05. Data were expressed as mean ± SD. ResultsChronic exposure to Cu did not induce any mortality in fish during the test period. However, following exposure to Cu, growth of fish in the exposed groups was affected more than that in the control group (unexposed to Cu). In addition, accumulation of Cu in the liver tissue was higher than that in the gill tissues of fish exposed to Cu, compared to that in the control. Gill and liver tissues of Cu-exposed fish showed a significant (P ≤ 0.05) reduction in the activities of the antioxidant enzymes, SOD, CAT, GPx, and GST, compared to those of unexposed fish. Non-enzymatic antioxidants, GSH and MT, in gill and liver tissues were significantly increased (P ≤ 0.05) in fish exposed to both concentrations of Cu, compared to those in unexposed fish. Oxidative stress indicators, MDA and PCO in gills and liver of Cu-exposed fish was significantly (P ≤ 0.05) at both tested concentrations, when compared to control group. Non-specific immune response of LYZ, RBA, and MPO activity in serum decreased significantly (P ≤ 0.05) in Cu-exposed fish, compared with that of unexposed fish. ConclusionOverall, the present results highlighted that chronic exposure to Cu ions may exert a strong effect on the antioxidant and immune responses of O. niloticus. Changes in antioxidant enzymes, oxidative stress effects and immune parameters during post-chronic metal exposure may indicate the potential of these parameters as biomarkers of metal toxicity in aquatic ecosystems.