ObjectiveFor patients with acute necrotizing pancreatitis (ANP), a high body mass index (BMI) increases the likelihood of acute hepatic injury (AHI). In the current study, we explored whether magnesium isoglycyrrhizinate (MgIg) could alleviate ANP-induced liver injury in obese rats. MethodsSprague-Dawley (SD) rats were selected for the present study, and the ANP model was established by retrograde injection of 5% sodium taurocholate into the biliary-pancreatic duct. Thirty-six SD rats were randomly assigned to six groups: the normal (N), standard rat chow (SRC) normal (SN), SRC ANP (S-ANP), high-fat diet (HFD) normal (H–N), HFD ANP (H-ANP), and MgIg pretreatment HFD ANP (H-ANPT) groups. The rats in the H-ANPT group were treated with MgIg (30 mg/kg) intragastrically for 7 days before the ANP model was established. The rats were sacrificed 12 h after ANP was established, and the blood and pancreatic and liver tissues were collected. Differences in the physiology, pathology and cellular and molecular responses of the rats in each group were examined. ResultAnalyses of serum amylase lipase, alanine aminotransferase and aspartate aminotransferase indicated that obesity aggravated ANP-induced hepatic injury and that MgIg improved liver function. The superoxide dismutase, malondialdehyde, M1 macrophage, M2 macrophage, neutrophil, NF-κB, IL-1β and caspase-3 levels in liver tissue showed that MgIg attenuated H-ANP-induced hepatic injury by inhibiting oxidative stress and inflammation. ConclusionObesity aggravated ANP-induced liver injury via oxidative stress and inflammatory reactions. MgIg alleviated oxidative stress and decreased the inflammatory reaction, protecting the liver against the AHI induced by ANP in obese rats.