Low-pH-induced fusion of liposomes with rat liver endoplasmic reticulum was evidenced. Fusion was inactivated by treatment of microsomes with trypsin or EEDQ (N-ethoxycarbonyl-2-ethoxy-1, 2-dihydroquinoline), indicating the involvement of a protein. The protein was purified 555-fold by chromatographic steps. The identification and purification to homogeneity was obtained by electroelution from a slab gel, which gave a still active protein of about 50 kDa. The protein promoted the fusion of liposomes; laser light scattering showed an increase of mean radius of vesicles from 60 up to about 340 nm. Fusion was studied as mass action kinetics, describing the overall fusion as a two-step sequence of a second order aggregation followed by a first order fusion of liposomes. For phosphatidylcholine containing liposomes aggregation was not rate-limiting at pH 5.0 and fusion followed first order kinetics with a rate constant of 13 . 10(-3) sec-1. For phosphatidylethanolamine/phosphatidic acid liposomes aggregation was rate-limiting; however, the overall fusion was first order process, suggesting that fusogenic protein influences both aggregation and fusion of liposomes. The protein binds to the lipid bilayer of liposomes, independently of pH, probably by a hydrophobic segment. Exposed carboxylic groups might be able to trigger pH-dependent aggregation and fusion. It is proposed that the protein inserted in the lipid bilayer bridges with an adjacent liposome forming a fused doublet. Since at endoplasmic reticulum level proton pumps are operating to generate a low-pH environment, the membrane bound fusogenic protein may be responsible for both aggregation and fusion of neighboring membranes and therefore could operate in the exchange of lipidic material between intracellular membranes.
Read full abstract