Live-cell imaging of RNA has remained a challenge because of the lack of naturally fluorescent RNAs. Recently developed RNA aptamers that can light-up small fluorogenic dyes could overcome this limitation, but they still suffer from poor brightness and photostability. Here, we propose a concept of cell-permeable fluorogenic dimer of sulforhodamine B dyes (Gemini-561) and corresponding dimerized aptamer (o-Coral) that can drastically enhance performance of the current RNA imaging method. The unprecedented brightness and photostability together with high affinity of this complex allowed, for the first time, direct fluorescence imaging in live mammalian cells of RNA polymerase-III transcription products as well as messenger RNAs labelled with a single copy of the aptamer, i.e. without tag multimerization. The developed fluorogenic module enables fast and sensitive detection of RNA inside live cells, while the proposed design concept opens the route to new generation of ultrabright RNA probes.
Read full abstract