The emergence and spread of highly pathogenic avian influenza (H5N1) viruses among poultry in Asia, the Middle East, and Africa have fueled concerns of a possible human pandemic, and spurred efforts towards developing vaccines against H5N1 influenza viruses, as well as improving vaccine production methods. In recent years, promising experimental reverse genetics-derived H5N1 live attenuated vaccines have been generated and characterized, including vaccines that are attenuated through temperature-sensitive mutation, modulation of the interferon antagonist protein, or disruption of the M2 protein. Live attenuated influenza virus vaccines based on each of these modalities have conferred protection against homologous and heterologous challenge in animal models of influenza virus infection. Alternative vaccine strategies that do not require the use of live virus, such as virus-like particle (VLP) and DNA-based vaccines, have also been vigorously pursued in recent years. Studies have demonstrated that influenza VLP vaccination can confer homologous and heterologous protection from lethal challenge in a mouse model of infection. There have also been improvements in the formulation and production of vaccines following concerns over the threat of H5N1 influenza viruses. The use of novel substrates for the growth of vaccine virus stocks has been intensively researched in recent years, and several candidate cell culture-based systems for vaccine amplification have emerged, including production systems based on Madin-Darby canine kidney, Vero, and PerC6 cell lines. Such systems promise increased scalability of product, and reduced reliance on embryonated chicken eggs as a growth substrate. Studies into the use of adjuvants have shown that oil-in-water-based adjuvants can improve the immunogenicity of inactivated influenza vaccines and conserve antigen in such formulations. Finally, efforts to develop more broadly cross-protective immunization strategies through the inclusion of conserved influenza virus antigens in vaccines have led to experimental vaccines based on the influenza hemagglutinin (HA) stem domain. Such vaccines have been shown to confer protection from lethal challenge in mouse models of influenza virus infection. Through further development, vaccines based on the HA stem have the potential to protect vaccinated individuals against unanticipated pandemic and epidemic influenza virus strains. Overall, recent advances in experimental vaccines and in vaccine production processes provide the potential to lower mortality and morbidity resulting from influenza infection.