Although there has been much recent interest in the effect of litter mixing on decomposition processes, much remains unknown about how litter mixing and diversity affects the abundance and diversity of decomposer organisms. We conducted a litter mixing experiment using litterbags in a New Zealand rainforest, in which treatments consisted of litter monocultures of each of 8 forest canopy and understory plant species, as well as mixtures of 2, 4 and 8 species. We found litter mixing to have little effect on net decomposition rates after either 279 or 658 days, and for each species decomposition rates in mixture treatments were the same as in monoculture. Litter species identity had important effects on litter microfauna, mesofauna and macrofauna, with different litter types promoting different subsets of the fauna. Litter mixing had few effects on densities of mesofauna and macrofauna, but did have some important effects on components of the microfauna, notably microbe-feeding and predatory nematodes. At day 279, litter mixing also consistently reduced the ratio of bacterial-feeding to microbe-feeding (bacterial-feeding+fungal-feeding) nematodes, pointing to mixing causing a significant switch from the bacterial-based to the fungal-based energy channel. Litter mixing sometimes influenced the community composition and diversity of nematodes and macrofauna, but effects of litter mixing on diversity were not necessarily positive, and were much weaker than effects of litter species identity on diversity. We conclude that litter mixing effects on the abundance and diversity of decomposer biota, when they occur, are likely to be of secondary and generally minor significance when compared to the effects of litter species identity and composition.