G-protein-coupled bile acid receptor 1 (GPBAR1/TGR5/M-Bar/GPR131) is a cell surface receptor involved in the regulation of bile acid metabolism. We have previously shown that Gpbar1-null mice are resistant to cholesterol gallstone disease when fed a lithogenic diet. Other published studies have suggested that Gpbar1 is involved in both energy homeostasis and glucose homeostasis. Here, we examine the functional role of Gpbar1 in diet-induced obese mice. We found that body weight, food intake, and fasted blood glucose levels were similar between Gpbar1-null mice and their wild-type (WT) littermates when fed a chow or high-fat diet (HFD) for 2 months. However, insulin tolerance tests revealed improved insulin sensitivity in male Gpbar1(-/-) mice fed chow, but impaired insulin sensitivity when fed a HFD. In contrast, female Gpbar1(-/-) mice exhibited improved insulin sensitivity when fed a HFD compared with their WT littermates. Female Gpbar1(-/-) mice had significantly lower plasma cholesterol and triglyceride levels than their WT littermates on both diets. Male Gpbar1(-/-) mice on HFD displayed increased hepatic steatosis when compared with Gpbar1(+)(/)(+) males and Gpbar1(-/-) females on HFD. These results suggest a gender-dependent regulation of Gpbar1 function in metabolic disease.