Against the backdrop of automobile electrification, an increasing number of battery-swapping stations for electric vehicles have been launched to address the issue of slow battery charging under cold temperature conditions. However, due to the separation of the discharging and charging processes for lithium-ion batteries (LIBs) at swapping stations, and the circulation of batteries across different vehicles and stations, the operating data become fragmented, making it difficult to accurately identify the battery state-of-health (SOH). This study proposes a BiLSTM-Transformer framework that extracts the Constant Voltage Time (CVT) feature using only charging data, enabling the precise estimation of battery capacity degradation. Validation experiments conducted on battery samples under different operating temperatures showed that the model achieved a normalized RMSE of less than 1.6%. In ideal conditions, the normalized RMSE of the estimation reached as low as 0.11%. This model enables SOH estimation without relying on discharge data, contributing to the efficient and safe operation of battery swapping stations.
Read full abstract