In tropical areas where coral calcareous sands are prevalent, artificial freezing techniques are frequently employed during construction. However, the fundamental thermodynamic behaviors and moisture dynamics of calcareous sands under freezing conditions are poorly understood. Therefore, we conducted laboratory tests and developed a numerical model to capture the total moisture, liquid water, and ice contents of calcareous sand during artificial freezing. The thermal fiber Bragg grating (T − FBG) and frequency − domain reflectometry methods were used in the study. Freezing characteristic curves were quantitatively analyzed with taking into account the initial moisture content and ambient temperature. The results indicate that T − FBG effectively estimates the total moisture content in unfrozen and frozen calcareous sand, as well as ice content in frozen soil, with less than 0.029 m3/m3 error. Ice melting induced by T − FBG heating is affected by the initial moisture content, heating duration, power, and ambient temperature. However, the maximum change is below 0.008 m3/m3, which is negligible. The van Genuchten model accurately describes the liquid moisture–temperature relationship of unsaturated calcareous sand, with an R2 exceeding 0.98. The residual–initial moisture content relationship follows a quadratic function. During freezing, the temperature reduction aligns with the Kozlowski model, and the liquid moisture–temperature relationship follows a cubic polynomial function.