Abstract
Supercooled water in mixed-phase clouds plays a significant role in precipitation formation, atmospheric radiation, weather modification, and aircraft flight safety. Identifying supercooled water in mixed-phase clouds is a crucial-frontier scientific issue in atmospheric detection research. In this study, we propose a new algorithm for identifying supercooled water based on the multi-spectral peak characteristics in cloud radar power spectra, combined with radar reflectivity factor and mean Doppler velocity. Using microwave radiometer data, we conducted retrieval analyses on two stratocumulus cases in the spring over the northeastern Daxing’anling region, China. The retrieval results show that the supercooled water in the spring stratocumulus clouds over the region is widespread, with liquid water content (LWC) ranging around 0.1 ± 0.05 g/m3, and particle sizes not exceeding 10 μm. The influence of updrafts on supercooled water is evident, with both showing good consistency in spatiotemporal variation trends. Comparing the liquid water path (LWP) variations retrieved from cloud radar and microwave radiometer, both showed good consistency in variation trends and high LWC areas, indicating the reliability of the identification algorithm developed in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.