Deep Eutectic Solvent(DES) and specifically Hydrophobic Deep Eutectic Solvents (HDES) are considered a relatively novel class of solvents, which show good features to include them in pervaporation membranes. Polymer inclusion HDES membranes offer a separation media, which shows a faster molecular diffusion than polymeric membranes, combining the best properties of liquid and polymer membranes, such a high selectivity with high burst pressure and durability.The aim of this work focuses on the development of different PEBAX/ lidocaine-thymol [2:1] (Lidol HDES) membranes by the temperature-induced phase-inversion technique to be used in the pervaporation process to recover butanol from ABE model solution. The mass transfer modeling through the membrane using the resistances-in-series approach was implemented to find the mass transfer resistance distribution.The polymer inclusion membranes showed improved results for the butanol/water selectivity compared to the single PEBAX membrane used as a reference. The flux of butanol obtained with the 30 % w/w Lidol HDES membrane was 0.112 kg m−2 hr−1. The flux of water was 0.445 kg m−2 hr−1 showing a selectivity value for butanol/water of 20 % bigger than single PEBAX membrane. The improvement in the selectivity can be explained by the synergic effect of the HDES in the membrane.After use, the polymer inclusion membrane consistently demonstrated a stable performance in effectively separating butanol from the ABE solution. It was seen that the overall resistance decreases as the liquid flow rate increases; regarding the liquid side resistance, it becomes important at smaller flow rates and is almost negligible for turbulent regimen.