The reconstruction of the fluid phase evolution in deep condensate gas reservoirs can reveal the mechanism of condensate gas formation, facilitating the early formulation of drilling strategies. However, the complexity of petroleum fluid phase evolution during hydrocarbon generation, migration, and accumulation poses numerous challenges for the reconstruction process. Therefore, petroleum fluid inclusion analysis, PVT phase simulation, and basin modeling were used to achieve the reconstruction of phase states during key geological periods, elucidating the phase evolution of the deep condensate reservoirs in the Dongying Depression during the whole process. The modeled results show that the mature source rocks contributed to the charging and accumulation of liquid oils (38–14 Ma). Next, a low oil cracking conversion rate limited the increase of gaseous hydrocarbon fraction, so the accumulated hydrocarbons remained in a liquid phase (14–0 Ma). The late external gas inputs significantly increased the gas-oil ratio in the reservoirs, leading to the transition from the liquid oil phase to the condensate phase (5–0 Ma). The fluid compositions obtained from hydrocarbon inclusions and the physical properties of present-day condensates can effectively constrain basin modeling, leading to reliable simulation results. This work revealed that the hydrocarbon generation controls the initial hydrocarbon components in the traps for the phase evolution. Furthermore, the secondary alterations including oil cracking and gas inputs influence the proportion of methane of petroleum in the deep reservoirs, which dominates the phase evolution. Deep petroleum fluid phase changes mainly require the molar ratio of the input gas more than 50%. A model was proposed to explain the formation of deep condensate reservoirs. A series of gas inputs and escape in the successive lithological traps controls an orderly phase change of deep petroleum, and the amount of deeper gas determines the range of the existence of condensate gas reservoirs. This study not only guides the exploration of deep condensate in the Dongying Depression but also offers a workflow for the research on the formation and evolution of condensate reservoirs in other global regions.
Read full abstract