Abstract

Soft porous matter is commonly encountered in artificial tissue applications, pharmaceuticals delivery systems and in cosmetic and food products. These materials are typically opaque and tend to deform under very small levels of shear; this makes the characterization of their microstructure very challenging, particularly in the native state. Air-in-oil systems (oleofoams) are an emerging type of soft material with promising applications in cosmetics and foods, which contain air bubbles stabilized by Pickering fat crystals dispersed in a liquid oil phase. Synchrotron radiation X-ray computed tomography (SR - XCT) is a non-invasive, non-destructive technique increasingly used to investigate multiphasic, porous materials, owing to its high flux which enables sub-micron resolution and significant statistics at rapid acquisition speed. While the penetration of high energy X-rays can provide high resolution images and allows the reconstruction of the 3D structure of samples, the experimental setup and measuring parameters need to be carefully designed to avoid sample deformation or beam damage. In this work, a robust methodology for investigating the 3D microstructure of soft, porous matter was developed. Sample preparation and experimental setup were chosen to allow synchrotron tomographic analysis of soft oleofoams with a low melting point (<30 °C). In particular, the use of cryogenic conditions (plunge-freeze in liquid nitrogen) provided stability against melting during the acquisition. Additionally, an image processing workflow was designed for analysing the 3D microstructure of the samples using ImageJ. Hence, the size and shape distribution of the air phase, as well as the thickness of the continuous gel phase could be determined for samples with significantly different microstructures (fresh vs. heated). Furthermore, the use of time-resolved X-ray radiography (XRR) allowed to study dynamic changes in the microstructure of the samples during thermal destabilization, visualizing bubble coalescence and growth in optically opaque foam samples with a sub-second timescale. • Synchrotron X-ray tomography was used to characterize oleofoams. • Oleofoams are soft, porous materials used for food, pharma or cosmetic applications. • X-ray tomography and radiography enabled the study of oleofoams' microstructure. • Synchrotron radiation allowed fast measurements and negligible sample damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call