Particle shape is one of the most important parameters that can cause significant changes of flow characteristics in liquid fluidized beds, which however has not been well studied in the past. In this work, CFD-DEM approach is used to investigate the hydrodynamics of ellipsoidal particles in liquid fluidizations. The non-uniformity distributions of pressure gradient and porosity with bed height are successfully captured for ellipsoids at high liquid superficial velocities, consistent with those reported in literature. The results also show that ellipsoids intend to enter the freeboard region and entrainment may occur. Disc-shape particles expand more significantly than spherical and elongated particles. The force analysis indicates that with particle aspect ratio deviating from 1.0, the drag force acting on ellipsoids increases while pressure gradient force reduces. Particle shape effects shown above are closely related to particle orientations which can significantly affect particle-fluid interaction force and particle terminal velocities.