Lithium-ion batteries using quasi-solid gel electrolytes (QSEs) have gained increasing interest due to their enhanced safety features. However, their commercial viability is hindered by low ionic conductivity and poor solid-solid contact interfaces. In this study, a QSE synthesized by in situ polymerizing methyl methacrylate (MMA) in 1,2-dimethoxyethane (DME)-based electrolyte is introduced, which exhibits remarkable performance in high-loading graphite||LiNi0.8Co0.1Mn0.1O2 (NCM811) pouch cells. Owing to the unique solvent-lacking solvation structure, the graphite exfoliation caused by the well-known solvent co-intercalation is prohibited, and this unprecedented phenomenon is found to be universal for other graphite-unfriendly solvents. The high ionic conductivity and great interfacial contact provided by DME enable the quasi-solid graphite||NCM811 pouch cell to demonstrate superior C-rate capability even at a high cathode mass loading (17.5mgcm-2), surpassing liquid carbonate electrolyte cells. Meanwhile, the optimized QSE based on carbonates exhibits excellent cycle life (92.4% capacity retention after 1700 cycles at 0.5C/0.5C) and reliable safety under harsh conditions. It also outperforms liquid electrolytes in other high-energy-density batteries with larger volume change. These findings elucidate the polymer's pivotal role in QSEs, offering new insights for advancing quasi-solid-state battery commercialization.