We demonstrate that polymeric films templated from liquid crystals (LCs) provide basic design principles for the synthesis of mesoporous films with predetermined pore alignment. Specifically, we used LC mixtures of reactive [4-(3-acryloyoxypropyloxy) benzoic acid 2-methyl-1,4-phenylene ester (RM257)] and nonreactive [4-cyano-4'-pentylbiphenyl (5CB)] mesogens confined in film geometries. The LC alignment was maintained by functionalization of the surfaces contacting the films during polymerization. Through photopolymerization followed by extraction of the unreacted mesogens, films of area in the order of 10 cm2 were obtained. We found that, when restricted to an area either through a mechanical or a configurational constraint, open and accessible pores were incorporated into the films. The average direction of the pores could be determined by the LC director during polymerization, and the average diameter of the pores can be tuned in the range of 10-40 nm by varying the reactive monomer concentration. The polymeric films synthesized here can potentially be used for the ultrafiltration purposes. We demonstrated successful separations of proteins and nanoparticles from aqueous media using the polymeric films. The films exhibited 2 orders of magnitude higher flux when the pores were aligned parallel to the permeate direction compared to the perpendicular direction. Overall, the outcomes of this study provide basic tools for the synthesis of porous polymeric films with predetermined pore directions that can potentially be suitable for separations, drug delivery, catalysts, and so forth.