In this work, we consider and analyze explicit exponential Runge–Kutta methods for solving semilinear time-fractional integro-differential equation, which involves two nonlocal terms in time. Firstly, the temporal Runge–Kutta discretizations follow the idea of exponential integrators. Subsequently, we utilize the spectral Galerkin method to introduce a fully discrete scheme. Then, we mainly focus on discussing the one-stage and two-stage methods for solving the proposed semilinear problem. Based on special abstract settings, we perform the convergence analysis for the proposed two different stage methods. In this process, we heavily use estimates about the operator family {S̃(t)}, and in combination with Lipschitz continuous condition. Finally, some numerical experiments confirm theoretical results. Meanwhile, applying this scheme to the related linear problem yields high-order convergence, highlighting the advantages of explicit exponential Runge–Kutta methods.
Read full abstract