Lipoteichoic acid (LTA) is an important cell wall polymer found in gram-positive bacteria. Although the exact role of LTA is unknown, mutants display significant growth and physiological defects. Additionally, modification of the LTA backbone structure can provide protection against cationic antimicrobial peptides. This review provides an overview of the different LTA types and their chemical structures and synthesis pathways. The occurrence and mechanisms of LTA modifications with D-alanyl, glycosyl, and phosphocholine residues will be discussed along with their functions. Similarities between the production of type I LTA and osmoregulated periplasmic glucans in gram-negative bacteria are highlighted, indicating that LTA should perhaps be compared to these polymers rather than lipopolysaccharide, as is presently the case. Lastly, current efforts to use LTAs as vaccine candidates, synthesis proteins as novel antimicrobial targets, and LTA mutant strains as improved probiotics are highlighted.
Read full abstract