The study investigated the potential association of the low-density lipoprotein (LDL) genome with endometrial cancer progression based on the Gene Expression Omnibus data set and The Cancer Genome Atlas data set. Differential and weighted gene coexpression network analysis was performed on endometrial cancer transcriptome datasets GSE9750 and GSE106191. The protein-protein interaction network was built using LDL-receptor proteins and the top 50 tumor-associated genes. Low-density lipoprotein-related receptors 5/6 (LRP5/6) in endometrial cancer tissues were correlated with oncogenes, cell cycle-related genes, and immunological checkpoints using Spearman correlation. MethPrimer predicted the LRP5/6 promoter CpG island. LRP2, LRP6, LRP8, LRP12, low-density lipoprotein receptor-related protein-associated protein, and LRP5 were major LDL-receptor-related genes associated with endometrial cancer. LRP5/6 was enriched in various cancer-related pathways and may be a key LDL-receptor-related gene in cancer progression. LRP5/6 may be involved in the proliferation process of endometrial cancer cells by promoting the expression of cell cycle-related genes. LRP5/6 may be involved in the proliferation of endometrial cancer cells by promoting the expression of cell cycle-related genes. LRP5/6 may promote the immune escape of cancer cells by promoting the expression of immune checkpoints, promoting endometrial cancer progression. The MethPrimer database predicted that the LRP5/6 promoter region contained many CpG islands, suggesting that DNA methylation can occur in the LRP5/6 promoter region. LRP5/6 may aggravate endometrial cancer by activating the phosphoinositide 3-kinase/protein kinase B pathway.