Exposure to environmental pollutants with obesogenic activity is being recognised as one of the contributing factors to the obesity epidemic. Bisphenol A (BPA) has been shown to stimulate adipogenesis in both human and mouse preadipocytes, to increase body weight and affect lipid metabolism in animal and epidemiological studies. Regulatory action and public concern has prompted industry to replace BPA with other structurally similar analogues that may have similar effects. In this study we investigated the effects of fifteen BPA analogues on adipogenesis in the mouse 3T3-L1 pre-adipocyte cell model in order to determine their adipogenic activity relative to BPA. 3T3-L1 cells were treated with increasing concentrations of BPA and replacements and mRNA expression of the mature adipocyte markers fatty acid binding protein 4 (Fabp4), perilipin (Plin) lipoprotein lipase (Lpl)and peroxisome proliferator-activated receptor (Ppar)γ and lipid accumulation were assessed. In addition, a luciferase reporter assay for PPARγ transactivation was employed to investigate mechanism of action. Our results show that BPC, BPS-MAE, BPS-MPE and TGSA, were the most adipogenic bisphenols, as shown by a robust increase in lipid accumulation and mRNA expression of adipogenic markers. BPS-MPE, BPC, BTUM, TGSA and D8 increased PPARγ transcriptional activity. Despite its ability to activate PPARγ in the transcriptional assay D8 did not affect adipogenesis in this cell model.
Read full abstract