Natural antibodies (NA) create a crucial barrier at the initial steps of the innate humoral immune response. The main role of NA in the defense system is to bind the pathogens at early stages of infection. Different pathogens are recognized by the presence of highly conserved antigen determinant [e.g., lipopolysaccharide (LPS) in gram-negative bacteria or lipoteichoic acid (LTA) in gram-positive bacteria]. In chickens, a different genetic background of NA binds LPS and LTA antigens, encoded by different QTL. The main objective of this work was to confirm known QTL associated with LPS and LTA NA. For this purpose a chicken reference population was created by crossing 2 breeds: a commercial layer, White Leghorn, and a Polish indigenous chicken, Green-Legged Partridgelike. The chromosomal regions analyzed harbored to GGA3, GGA5, GGA6, GGA8, GGA9, GGA10, GGA14, GGA15, GGA18, and GGAZ. The data collected consisted of the NA titers binding LPS and LTA (determined by ELISA at 12 wk of age) as well as the genotypes (30 short tandem repeat markers; average of 3 markers/chromosome, collected for generations F(0), F(1), and F(2)). The analyses were performed with 3 statistical models (paternal and maternal half-sib, line cross, and linkage analysis and linkage disequilibrium) implemented in GridQTL software (http://www.gridqtl.org.uk/). The QTL study of humoral innate immune response traits resulted in the confirmation of 3 QTL associated with NA titers binding LPS (located on GGA9, GGA18, and GGAZ) and 2 QTL associated with NA titers binding LTA (located on GGA5 and GGA14). A set of candidate genes within the regions of the validated QTL has been proposed.
Read full abstract