The study focused on investigating the impact of various environmental parameters on the production of Scenedesmus, a unicellular alga known for its industrial and food value. The parameters studied included production method, temperature, lighting period, light intensity, and pH, with a particular emphasis on suspension and biofilm production methods. The results highlighted optimal conditions for different aspects of production, such as cell density, biomass production, lipid production, and biodiesel production. Specifically, the findings indicated that the highest cell density was achieved at a temperature of 25 °C, light intensity of 3000 lux, lighting period of 16 h, and pH of 8. For biomass production, the optimal conditions were a temperature of 25 °C, light intensity of 3000 lux, lighting period of 18 h, and pH of 9. The greatest lipid production was observed at a temperature of 20 °C, light intensity of 4000 lux, lighting period of 18 h, and pH of 8. Moreover, the highest biodiesel production was recorded at a temperature of 25 °C, light intensity of 3000 lux, lighting period of 18 h, and pH of 8. Notably, the study found that the biofilm production method outperformed the suspension method across various parameters, including cell density, biomass production, lipid production, and biodiesel production. These results contribute to the existing knowledge of optimal conditions for microalgae production and underscore the potential of Scenedesmus in industrial and food applications.