HypothesisMesophase dispersions are promising colloids for removing micropollutants from water. We hypothesized that the complex internal nanostructure and tunable lipid/water interface amounts play a crucial role in absorbed quantities. Modifications in interfacial organization within the particles while trapping the micropollutant is assumed. ExperimentsWe formulated stable monolinolein-based dispersions with four types of mesophases (bicontinuous and micellar cubic, hexagonal, and fluid isotropic L2) by varying dodecane contents. The absorption of bisphenol A by these dispersions from water was monitored using molecular spectroscopy. At equilibrium, absorbed quantities by mesophase dispersions were compared to unstructured dodecane/water miniemulsions for two bisphenol concentrations. Structural changes during bisphenol incorporation were identified using small-angle X-ray scattering. FindingsLipid mesophase particles of submicron size showed greater bisphenol incorporation than dodecane/water miniemulsions, with cubosomes being most effective ones, absorbing twice as much as unstructured emulsions. Higher absorption levels are observed for more complex nanostructures with increased lipid/dodecane ratios. The incorporation of bisphenol affected the curvature of internal interfaces, potentially causing phase transitions and indicating that bisphenol settles at interfaces. Similar absorption levels in identical mesophases suggest a strong correlation between nano-structure and absorbed quantities.