Spirulina platensis (SP) has gained popularity over the last few years, owing to its remarkable nutritional properties and high potential across various industrial sectors. In this study, we analyzed the volatile profile of eight SP samples from the same strain subjected to different drying (oven-drying, air-drying, and spray-drying) and storing conditions (“freshly prepared” and after 12 months of storage) using HS-SPME-GC-MS. Principal component analysis (PCA) was used as a multivariate technique to discern similarities and differences among the samples. The main aim was to assess the impact of the drying technique on the aroma profile and storage life of SP samples. Air-drying leads to the less pronounced formation of by-products related to heat treatment, such as Maillard and Strecker degradation compounds, but promotes oxidative and fermentative phenomena, with the formation of organic acids and esters, especially during storage. Thermal treatment, essential for limiting degradation and fermentation during storage and extending shelf life, alters the aroma profile through the formation of volatile compounds, such as Strecker aldehydes and linear aldehydes, from amino acid and lipid degradation. High temperatures in spray-drying favor the formation of pyrazines. The findings underscore the trade-offs inherent in choosing an appropriate drying method, thereby informing decision-making processes in industrial settings aimed at optimizing both product quality and efficiency.
Read full abstract