Lipid bilayer vesicles, liposomes are representative drug delivery carriers. High encapsulation efficiency and release control of drugs are essential for clinical application of liposomes. For efficient drug loading into liposomes, remote loading method using driving force like transmembrane gradients of pH and ions are utilized. Ions are called as "trapping agents," which are also critical for the controlled release of drugs loaded into liposomes inside. It is difficult to apply ions as trapping agents to various drugs because of limited physicochemical compatibility between drugs and ions. Cyclodextrins (CDs) with hydrophobic cavity can make inclusion complexes with various hydrophobic compounds. Therefore, we aimed to evaluate the potential of CDs as a novel trapping agent using sulfobutylether-β-cyclodextrin (SBE-β-CD) and ibuprofen (IB), a weak acid hydrophobic drug. Encapsulation efficiency of IB in liposomes with pH gradient was approximately 27%, and it was enhanced by intraliposomal SBE-β-CD inclusion in addition to pH gradient, which was SBE-β-CD concentration-dependent. In liposomes with pH gradient, a large fraction of IB was released in a short time. This early-stage rapid IB release was significantly suppressed by the inclusion of SBE-β-CD inside liposomes. Thus, novel remote loading technology by intraliposomal SBE-β-CD enabled the efficient encapsulation of the hydrophobic drug into the aqueous phase of liposomes as well as their controlled release. This technology should be applied to various drugs that can be included into CDs in order to enhance their therapeutic benefits.
Read full abstract