Hexachlorobenzene (HCB) is still frequently found at elevated levels in human adipose tissue and breast milk. As intoxication with HCB causes neurological disturbance in human beings, the purpose of the present study was to examine neurobehavioral functions in rats after pre- and postnatal exposure. Female rats were fed diets with 0, 4, 8, or 16 mg HCB/kg diet. Exposure started 90 days prior to mating and was continued throughout mating, gestation, and lactation. Thereafter, the offspring were given the same diets as their respective mothers. HCB levels were determined in the brain, the liver, and in the adipose tissue from virgin rats, dams, and the offspring. Concentrations on a lipid basis were found to decline in the order adipose > liver > brain. The exposure levels chosen did not cause gross toxic effects in dams or offspring. There were dose-related increases in liver-to-body-weight ratios in exposed dams, but not in unmated females treated alike. Behavioral testing was conducted in the offspring. Examination of open-field activity on PND 21, and of active avoidance learning on PND 90 failed to reveal significant differences between groups. Training of operant behavior started at the age of 150 days in the offspring from the control, the 8-mg group, and the 16-mg group. Animals were trained on a fixed interval schedule of 1 min (FI-1). On this schedule, responses were reinforced by a food pellet every time 1 min had elapsed after the preceding reinforcement. There were dose-dependent reductions in the post-reinforcement pause, e.g. the time between each reinforcement and the first reaction emitted after it. In addition, the index of curvature, which describes the efficiency of performance on the FI-1 schedule, was decreased in a dose-dependent fashion.
Read full abstract