We consider a quiver structure on the set of quandle colorings of an oriented knot or link diagram. This structure contains a wealth of knot and link invariants and provides a categorification of the quandle counting invariant in the most literal sense, i.e. giving the set of quandle colorings the structure of a small category which is unchanged by Reidemeister moves. We derive some new enhancements of the counting invariant from this quiver structure and show that the enhancements are proper with explicit examples.
Read full abstract