Abstract In vitro cancer research often fails to translate to the clinic, in part due to the use of traditional 2D cancer cell lines as models, which fail to resemble primary cancer cells by a variety of measures, including high mutational burden. An emerging solution to this problem is to replace traditional cell lines with patient tissue-derived cells expanded in 3D, also known as tumoroids or cancer organoids. We developed a defined, serum- and conditioned medium-free system, GibcoTM OncoProTM Tumoroid Culture Medium, that can be used to derive stable tumoroid lines from a variety of tissue sources and maintains the phenotype and genotype of patient-derived tumor cells. By supplementing the base medium with indication-specific growth factors, tumoroid lines were derived from colorectal, lung, and endometrial cancers from both fresh surgical resections and cryopreserved primary cancer cells. To demonstrate the utility of these patient-derived cells as long-term in vitro models, colorectal and lung tumoroid lines were derived from multiple donors and cultured for up to 50 passages. Brightfield microscopy, cell counts, and next-generation sequencing were used to assess maintenance of tumoroid morphology, growth rate, gene expression patterns, and genomic mutations. Patient-derived tumoroid cultures adopted donor-specific morphologies that were maintained during long-term culture. Cell doubling time tended to stabilize within the first few passages as cultures established, was donor-dependent, and averaged around 65 hours for colorectal tumoroids - on par with that of traditional 2D cancer cell lines - and 90-100 hours for lung and endometrial tumoroids, respectively. Importantly, tumoroid lines maintained their gene expression pattern for over 20,000 human RefSeq genes during long-term culture, with correlation between initial tumor material and late-passage samples of R>0.8. Distinct molecular subtypes of colorectal cancer were preserved in cultured tumoroids. The allelic frequency of single nucleotide variations (SNVs) in 161 highly relevant cancer genes was also highly correlated (R>0.9) between uncultured tissue and late-passage tumoroids. Within SNVs, transition/transversion mutation ratios were conserved. Tumoroids were cryopreserved and recovered during this study, demonstrating that biobanking of colorectal and lung tumoroids should not impact their long-term stability. Finally, a subset of the derived colorectal and lung tumoroids were tested and shown to be tumorigenic in mice, where subsequent histology of the tumor was similar to that of in vitro cultures. Altogether, tumoroid derivation and culture in this novel medium enables the long-term preservation of patient-specific cellular genotype and phenotype, which should allow for expansion, biobanking, and performance of experimental repeats within the same patient tissue-derived cultures across labs and over time. Citation Format: Chris Yankaskas, Brittany Balhouse, Colin Paul, Shyanne Salen, Sybelle Djikeng, Pradip Shahi Thakuri, Mark Kennedy, Matt Dallas, David Kuninger. Derivation and long-term maintenance of patient-derived tumoroid lines in a defined, serum-free medium [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 160.