Background: Mustard represents a rich diversity and widely cultivated in 23 states and union territories of India. However, much of this diversity is concentrated in the Indo-Gangetic plains and the sub-mountain Himalayas. Genetic diversity plays a significant role in plant improvement because a hybrid between the lines of diverse origin usually display a greater heterosis than those between closely related ones which permit the selection of genetically divergent plants to obtain the desirable recombination of segregating generation. Therefore, the present study was undertaken to assess “Genetic Divergence in Leafy Mustard (Brassica juncea. var. rugosa) germplasm grown under Tarai condition of Uttarakhand” and to identify divergent parents for hybridization program, which would provide superior transgressive segregants from collected germplasm. Methods: The present investigation consisted of thirty-two genotypes of leafy mustard and the research was carried out at Vegetable Research Centre (VRC), G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar (Uttarakhand) in rabi season of 2015-2016. Mustard genotypes were sown in randomized block design with three replications in field and data were observed for seventeen quantitative and qualitative characters. The estimation of genetic divergence was done with the help of Mahalonobis D2 statistic as suggested by Rao (1952). Cluster analysis by Tocher method for all the traits was done. Result: Thirty two germplasm of leafy mustard for different characters and grouped them into six clusters using Mahalanobis D2 statistic. The analysis revealed the maximum inter cluster distance was (20534.12) between cluster V and cluster VI so, we can create variation by inter mating genotypes from these two clusters to each other and the maximum intra cluster distance in cluster III (441.91) with six germplasm. It means we can intermate genotypes of this cluster with each other (2014/MGVAR-2, FS-13-1, FS-13-4, 2014/MGVAR-4, PRHC-12-9-1, PRHC-12-7-2, FS-13-3 and Pusa Sag 1) to create variation in next generations. The clustering pattern could be utilized in selection of parents for crossing and deciding the best cross combinations which may generate the highest possible variability for various traits.
Read full abstract