We consider a Galerkin method for an elliptic pseudodifferential operator of order zero on a two-dimensional manifold. We use piecewise linear discontinuous trial functions on a triangular mesh and describe an orthonormal wavelet basis. Using this basis we can compress the stiffness matrix from N2 to O(N log N) nonzero entries and still obtain (up to log N terms) the same convergence rates as for the exact Galerkin method.
Read full abstract