A compact star model formed by quintessence and ordinary matter is presented, both sources have anisotropic pressures and are described by linear state equations, also the state equation of the tangential pressure for the ordinary matter incorporates the effect of the quintessence. It is shown that depending on the compactness of the star [Formula: see text] the constant of proportionality [Formula: see text] between the density of the ordinary matter and the radial pressure, [Formula: see text], has an interval of values which is consistent with the possibility that the matter is formed by a mixture of particles like quarks, neutrons and electrons and not only by one type of them. The geometry is described by the Durgapal metric for [Formula: see text] and each one of the pressures and densities is positive, finite and monotonic decreasing, as well as satisfying the condition of causality and of stability [Formula: see text], which makes our model physically acceptable. The maximum compactness that we have is [Formula: see text], so we can apply our solution considering the observational data of mass and radii [Formula: see text], [Formula: see text] km which generate a compactness [Formula: see text] associated to the star PSR J0348[Formula: see text]+[Formula: see text]0432. In this case, the interval of [Formula: see text] and its maximum central density [Formula: see text] and in the surface [Formula: see text] of the star are [Formula: see text] and [Formula: see text], respectively, meanwhile the central density of the quintessence [Formula: see text].