AbstractWe consider linear preferential attachment trees with additive fitness, where fitness is the random initial vertex attractiveness. We show that when the fitnesses are independent and identically distributed and have positive bounded support, the local weak limit can be constructed using a sequence of mixed Poisson point processes. We also provide a rate of convergence for the total variation distance between the r-neighbourhoods of a uniformly chosen vertex in the preferential attachment tree and the root vertex of the local weak limit. The proof uses a Pólya urn representation of the model, for which we give new estimates for the beta and product beta variables in its construction. As applications, we obtain limiting results and convergence rates for the degrees of the uniformly chosen vertex and its ancestors, where the latter are the vertices that are on the path between the uniformly chosen vertex and the initial vertex.