Vibrational excitation and relaxation of five linear polyatomic molecules, OCS, OC3S, HC3N, HC5N, and SiC2S, have been studied by Fourier transform microwave spectroscopy in a supersonic expansion after the application of a low-current dc electric discharge. For each chain, the populations in bending and stretching modes have been characterized as a function of the applied discharge current; for stable OCS and HC3N, vibrational populations were studied as well in the absence of a discharge. With no discharge present the derived vibrational temperatures are slightly below T, the temperature of the gas before the supersonic expansion (i.e., 300 K). In the presence of the discharge, vibrational excitation occurs via inelastic collisions with the electrons and the vibrational temperatures rise as the applied current increases. Global vibrational relaxation is governed by rapid vibration-vibration (VV) energy transfer and slow vibration-translation (VT) energy transfer. The latter process is rate-determining and depends primarily on the wave number of the vibration. Vibrational modes with wave numbers near and below kT/hc (where T = 300 K and kT/hc-210 cm(-1)) are efficiently cooled by VT transfer because a sufficient number of collisions occur in the initial stages of the supersonic expansion. Vibrational modes with wave numbers around 450 cm(-l) appear to be inefficiently cooled in the molecular beam; at these energies VV and VT rates are probably comparable. For high-frequency vibrations, VV energy transfer dominates. For the longer chains OC3S and HC5N, higher-lying modes are generally not detectable and vibrational temperatures of most lower-lying modes were found to be lower than those of OCS and HC3N, suggesting that as the size of the molecules increases, intermode VV transfer becomes more efficient, plausibly due to the higher density of vibrational levels. New high resolution spectroscopic data have been obtained for several vibrationally excited states of OC3S, HC3N, and HC5N. Rotational lines of the 13C and 15N isotopic species of HC5N have been measured, yielding improved rotational and centrifugal distortion constants; 14N nitrogen quadrupole coupling constants for the isotopic species of HC5N with 13C have been determined for the first time.