Shallots are one of the most widely produced crops in Enrekang Regency. The obstacle in cultivation is the presence of disease in the plant which can reduce production yields. We can recognize this disease from the spots on the leaves because these spots have unique color and texture characteristics. The aim of this research is to determine the results of the classification of shallot plant diseases which focuses on purple spot and moler disease. The classification algorithms used are CNN and SVM with RBF, linear, sigmoid and polynomial kernels. The feature extraction method used is Gray Level Co-occurance Matrix (GLCM). The analysis was carried out using 320 datasets with 2 classes, namely, purple spot disease and moler disease, each class has 160 datasets. The test results show that the CNN and SVM methods with RBF, linear and polynomial kernels get accuracy, precision, recall and F1 scores of 100% respectively. Meanwhile, the SVM method on the sigmoid kernel using texture feature extraction with the GLCM method states that the accuracy value is 75%, precision 75%, recall 73% and F1-Score 74%. So these results state that the Sigmoid method using GLCM feature extraction has the lowest value among other methods
Read full abstract