The damping of a structure has often been modeled as linear hysteretic damping (LHD), so its corresponding equation of motion (EOM) is an integro-differential equation that involves the Hilbert transform of response displacement. As a result, the system is non-causal in nature, and it is challenging to compute its nonstationary response statistics under evolutionary stochastic excitation. This article develops an efficient solution method to obtain closed-form solutions for various nonstationary response statistics, including the evolutionary power spectrum (EPS), correlation function and mean square values. The novel solution method utilizes the concept of causalization time to introduce a “causalized” impulse response function (IRF), by which causal response statistics are computed based on a pole-residue approach. This approach requires obtaining a pole-residue form of the transfer function (TF) from the frequency response function (FRF) of the system, which is readily obtained from the EOM. Subsequently, the desired response statistics are obtained by shifting the causal response statistics back to the original time. To obtain the pole-residue form of the TF, two steps are necessary: (1) taking the inverse Fourier transform of the FRF of the oscillator to obtain a discrete IRF and (2) using the Prony-SS method to decompose this discrete IRF to obtain the pole residues associated with the TF. The correctness of the proposed method is numerically verified by Monte Carlo simulations through examples of hysteretic damping and mixed viscous-hysteretic damping oscillators that are subjected to white noise, modulated white noise and modulated Kanai–Tajimi model random excitations.
Read full abstract