This paper aims to investigate the effects of soil penetration resistance, tillage depth, and operating speeds on the deformation and fatigue of the subsoiling shovel based on the real-time measurement of tractor-operating conditions data. Various types of sensors, such as force, displacement, and angle, were integrated. The software and hardware architectures of the monitoring system were designed to develop a field operation condition parameter monitoring system, which can measure the tractor’s traction force of the lower tie-bar, the real-time speed, the latitude and longitude, tillage depth, and the strain of the subsoiling shovel and other condition parameters in real-time. The time domain extrapolation method was used to process the measured data to obtain the load spectrum. The linear damage accumulation theory was used to calculate the load damage of the subsoiling shovel. The magnitude of the damage value was used to characterize the severity of the operation. The signal acquisition test and typical parameter test were conducted for the monitoring system, and the test results showed that the reliability and accuracy of the monitoring system met the requirements. The subsoiling operation test of the system was carried out, which mainly included two kinds of soil penetration resistances (1750 kPa and 2750 kPa), three kinds of tillage depth (250 mm, 300 mm, and 350 mm), and three kinds of operation speed (4 km/h low speed, 6 km/h medium speed, and 8 km/h high speed), totaling 18 kinds of test conditions. Eventually, the effects of changes in working condition parameters of the subsoiling operation on the overall damage of subsoiling shovels and the differences in damage occurring between the front and rear rows of subsoiling shovels under the same test conditions were analyzed. The test results show that under the same soil penetration resistance, the overall damage sustained by the subsoiling shovels increases regardless of the increase in the tillage depth or operating speed. In particular, the increase in the tillage depth increased the severity of subsoiling shovel damage by 19.73%, which was higher than the 17.48% increase due to soil penetration resistance and the 13.07% increase due to the operating speed. It should be noted that the front subsoiling shovels consistently sustained more damage than the rear, and the difference was able to reach 16.86%. This paper may provide useful information for subsoiling operations, i.e., the operational efficiency and the damage level of subsoiling shovels should be considered.