The relative biological effectiveness (RBE) of densely ionizing radiation can depend on the biological context. From a radiological perspective, age is an important factor affecting health risks of radiation exposure, but little is known about the modifying impact of age on the effects of densely ionizing radiation. Herein, we addressed the influence of age on leukemogenesis induced by accelerator-generated fast neutrons (mean energy, ∼2 MeV). Male C3H/HeNrs mice were exposed to 137Cs γ rays (0.2-3.0 Gy) or neutrons (0.0485-0.97 Gy, γ ray contamination 0.0105-0.21 Gy) at 1, 3, 8, or 35 weeks of age and observed over their lifetimes under specific pathogen-free conditions. Leukemia and lymphoma were diagnosed pathologically. Hazard ratio (HR) and RBE for myeloid leukemia mortality as well as the age dependence of these two parameters were modeled and analyzed using Cox regression. Neutron exposure increased HR concordant with a linear dose response. The increase of HR per dose depended on age at exposure, with no significant dose dependence at age 1 or 3 weeks but a significant increase in HR of 5.5 per Gy (γ rays) and 16 per Gy (neutrons) at 8 weeks and 5.8 per Gy (γ rays) and 9 per Gy (neutrons) at 35 weeks. The RBE of neutrons was 2.1 (95% confidence interval, 1.1-3.7), with no dependence on age. The development of lymphoid neoplasms was not related to radiation exposure. The observed increasing trend of radiation-associated mortality of myeloid leukemia with age at exposure supports previous epidemiological and experimental findings. The results also suggest that exposure at the susceptible age of 8 or 35 weeks does not significantly influence the RBE value for neutrons for induction of leukemia, unlike what has been documented for breast and brain tumors.