In this paper, we study the problem of robust stabilization for discrete linear time-varying (LTV) systems subject to time-varying normalized coprime factor uncertainty. Operator theoretic results which generalize similar results known to hold for linear time-invariant (infinite-dimensional) systems are developed. In particular, we compute an upper bound for the maximal achievable stability margin under TV normalized coprime factor uncertainty in terms of the norm of an operator with a time-varying Hankel structure. We point to a necessary and sufficient condition which guarantees compactness of the TV Hankel operator, and in which case singular values and vectors can be used to compute the time-varying stability margin and TV controller.