The continuum clockwork is an extra-dimensional set-up to realize certain features of the clockwork mechanism generating exponentially suppressed or hierarchical couplings of light particles. We study the continuum clockwork in a general scheme in which large volume, warped geometry, and localization of zero modes in extra dimension are described by independent parameters. For this, we propose a generalized 5-dimensional linear dilaton model which can realize such set-up as a solution of the model, and examine the KK spectrum and the couplings of zero modes and massive KK modes to boundary-localized operators for the bulk graviton, Abelian gauge bosons and periodic scalar fields. We discuss how those KK spectra and couplings vary as a function of the volume, warping and localization parameters, and highlight the behavior in the parameter region corresponding to the clockwork limit. We discuss also the field range of 4-dimensional axions originating from either 5-dimensional periodic scalar field or the 5-th component of an Abelian gauge field, and comment on the limitations of continuum clockwork compared to the discrete clockwork.
Read full abstract