Quantum entanglement is a crucial resource for performing quantum computing and constructing quantum communication networks. The preparation and manipulation of entangled light field are the basic elements of quantum communication. With the development of science and technology, multicolor multipartite entanglement is becoming a kind of special resource for quantum information, quantum networks, and quantum memory. In this paper, we propose a scheme of generating quadripartite entanglement among four output beams from a two-port frequency doubling resonator, in which a type-II phase matching nonlinear crystal is placed. We make two fundamental-frequency pump beams with the same frequency and vertical polarization pass through the nonlinear crystal to produce two frequency-doubling beams. There is a quadripartite entanglement between the frequency-doubling beams, which are output at two ports of the optical resonator, and the incident fundamental beams. Based on the transmission matrix from the coupled wave equation, the self-consistent equations of the intracavity modes and the corresponding noise properties of the output modes can be obtained. Then, the quadripartite entanglement produced from two second harmonic beams and two reflected fundamental-frequency pump beams, is verified by using the positive partial transposition criterion, in a wide range of pumping power and analysis frequency. The setup proposed in this work is compact and experimentally feasible. It is also convenient to separate the four entangled beams spatially, with different wavelengths and polarizations. When the beam wavelengths are matched with 1560 nm (low loss window of fiber) and 780 nm (atomic absorption line of Rb), this scheme can be more useful in both quantum communication and quantum memory.
Read full abstract