Abstract
It has been experimentally demonstrated that the use of the effect of significant narrowing of the fluorescence spectrum from a nanocell that contains a column of atomic Rb vapor with a thickness of L = 0.5λ (where λ = 794 nm is the wavelength of laser radiation, whose frequency is resonant with the atomic transition of the D1 line of Rb) and the application of narrowband diode lasers allow the spectral separation and investigation of changes in probabilities of optical atomic transitions between levels of the hyperfine structure of the D1 line of 87Rb and 85Rb atoms in external magnetic fields of 10–2500 Gs (for example, for one of transitions, the probability increases ∼17 times). Small column thicknesses (∼390 nm) allow the application of permanent magnets, which facilitates significantly the creation of strong magnetic fields. Experimental results are in a good agreement with the theoretical values. The advantages of this method over other existing methods are noted. The results obtained show that a magnetometer with a local spatial resolution of ∼390 nm can be created based on a nanocell with the column thickness L = 0.5λ. This result is important for mapping strongly inhomogeneous magnetic fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.