Geothermal recovery involves a coupled thermo-hydro-mechanical (THM) process in fractured rocks. A fluid transient equilibrium equation, considering thermal conduction, convection, and heat exchange, is established. The evolution of the reservoir permeability and the variance in the fracture aperture due to a change in the stress field are derived simultaneously. THM coupling is accomplished through iterative hydromechanical and thermo-hydro processes. To overcome the difficulty of geometric discretization, a three-dimensional THM coupler model embedded with discrete fracture networks, using a zero-thickness surface and line elements to simulate fractures and injection/production wells, is established to evaluate the geothermal production. The reliability of the method is verified by a case study. Then, this method is applied to evaluate the influence of the geometric topological characteristics of fracture networks and the fracture aperture on the reservoir temperature evolution and heat extraction effectiveness. The results show that the power generation efficiency and geothermal depletion rate are significantly affected by the injection–production pressure. Injection wells and production wells with pressures higher than the initial fluid pressure in the fractures can be used to significantly increase power generation, but the consumption of geothermal energy and loss of efficiency are significant and rapid. To achieve better benefits for the geothermal recovery system, an optimization algorithm based on simultaneous perturbation stochastic approximation (SPSA) is proposed; it takes the power generation efficiency as the objective function, and the corresponding program is developed using MATLAB to optimize the position and pressure values for each production well. The results show that the heat transfer for the entire EGS reservoir becomes more uniform after optimization, and the heat transfer efficiency is greatly improved.
Read full abstract