LincRNA-P21 is a tumor suppressor in esophageal squamous cell carcinoma (ESCC). Cell adhesion modules play vital roles in cell-cell and cell-extracellular matrix (ECM) interactions and malignant cancer progression. In this study, we investigate whether lincRNA-P21 exerts its functions by regulating the cell adhesion molecule cadherin 5 (CDH5) in ESCC. Moreover, the RNA binding protein (RBP) mediators of lincRNA-P21 and CDH5 are further examined. Cell viability, growth and migratory ability are assessed by calcein-AM/PI double staining, CCK-8, EdU, Transwell, and wound healing assays. The expression of collagen I and fibronectin is examined by immunofluorescence (IF). LincRNA-P21 and CDH5 are quantified by RT-qPCR and western blot analysis. Potential lincRNA-P21 targets are identified by RNA sequencing. RBPs that can interact with lincRNA-P21 and CDH5 are identified by RNA immunoprecipitation (RIP) assay. LincRNA-P21 knockdown increases cell viability, growth, cell migration, and collagen I and fibronectin expression in ESCC cells. LincRNA-P21 depletion induces the dysregulation of 316 genes, including CDH5, in TE-1 cells. CDH5 is identified as a downstream molecule of lincRNA-P21 given its close correlation with cell adhesion, ECM reconstruction, and cancer progression. LincRNA-P21 exerts its functions by negatively regulating CDH5 expression. YTH domain containing 1 (YTHDC1) mediates the regulatory effect of lincRNA-P21 on CDH5. LincRNA-P21 knockdown elevates cell viability and growth, promotes cell migration, and induces ECM reorganization by upregulating CDH5 via RBP YTHDC1 in ESCC.