Engineered microorganisms have emerged as viable alternatives for limonene production. However, issues such as low enzyme abundance or activities, and regulatory feedback/forward inhibition may reduce yields. To understand the underlying metabolism, we adopted a systems biology approach for an engineered limonene-producing Escherichia coli strain K-12 MG1655. Firstly, we generated time-series metabolomics data and, secondly, developed a dynamic model based on enzyme dynamics to track the native metabolic networks and the engineered mevalonate pathway. After several iterations of model fitting with experimental profiles, which also included 13C-tracer studies, we performed in silico knockouts (KOs) of all enzymes to identify bottleneck(s) for optimal limonene yields. The simulations indicated that ALDH/ADH (aldehyde dehydrogenase/alcohol dehydrogenase) and LDH (lactate dehydrogenase) suppression, and HK (hexokinase) enhancement would increase limonene yields. Experimental confirmation was achieved, where ALDH-ADH and LDH KOs, and HK overexpression improved limonene yield by 8- to 11-fold. Our systems biology approach can guide microbial strain re-engineering for optimal target production.
Read full abstract