The nucleophilic opening of an epoxide is a classic organic reaction that has widespread utility in both academic and industrial applications. We have studied the reaction of limonene oxide with morpholine to form 1-methyl-2-morpholino-4-(prop-1-en-2-yl) cyclohexan-1-ol in bulk solution and in electrosprayed microdroplets with a 1:1 v/v water/methanol solvent system. We find that even after 90min at room temperature, there is no product detected by nuclear magnetic resonance spectroscopy in bulk solution whereas in room-temperature microdroplets (2-3μm in diameter), the yield is already 0.5% in a flight time of 1ms as observed by mass spectrometry. This constitutes a rate acceleration of ~ 105 in the microdroplet environment, if we assume that as much as 5% of product is formed in bulk after 90min of reaction time. We examine how the reaction rate depends on droplet size, solvent composition, sheath gas pressure, and applied voltage. These factors profoundly influence the extent of reaction. This dramatic acceleration is not limited to just one system. We have also found that the nucleophilic opening of cis-stilbene oxide by morpholine is similarly accelerated. Such large acceleration factors in reaction rates suggest the use of microdroplets for ring opening of epoxides in other systems, which may have practical significance if such a procedure could be scaled. Graphical Abstract This graphical image is distorted. It is too extended in the vertical direction. Please fix.ᅟ.
Read full abstract